Механические свойства примеры. Механические свойства металлов




Механические свойства характеризуют способность материала сопротивляться деформации и разрушению под действием приложенных нагрузок.

По характеру изменения во времени действующей нагрузки механические испытания делятся на статические (на растяжение, сжатие, изгиб, кручение); динамические (на ударный изгиб) и циклические (на усталость).

По воздействию температуры на процесс их делят на испытания при комнатной температуры, низкотемпературные и высокотемпературные (на длительную прочность, ползучесть).

Статические испытания проводятся при воздействии на образец с определенной скоростью постоянно действующей нагрузки. Скорость деформации составляет 10 -4 –10 -1 с -1 . Статические испытания на растяжение относятся к наиболее распространенным. Свойства, определяемые при этих испытаниях, приведены в многочисленных стандартах по техническим условиям на материалы. К статическим испытаниям относятся: растяжение, сжатие, изгиб, кручение.

Динамические испытания характеризуются приложением к образцу ударной нагрузки и значительной скоростью деформации. Длительность испытания не превышает сотен долей секунды. Скорость деформации составляет около 10 2 с -1 . Динамические испытания чаще всего проводят по схеме ударного изгиба образцов с надрезом.

Циклические испытания характеризуются многократными изменениями нагрузки по величине и по направлению. Примером испытаний являются испытания на усталость , они длительны и по их результату определяют число циклов до разрушения при разных значениях напряжения. В конечном итоге находят предельные напряжения, которые образец выдерживает без разрушения в течение определенного числа циклов нагружения.

Простейшим механическим свойством является твердость. Способы определения твердости делятся, в зависимости от скорости приложения нагрузки, на статические и динамические а по способу ее приложения – на методы вдавливания и царапания. Методы определения твердости по Бринеллю, Роквеллу, Виккерсу относятся к статическим методам испытания.

Твердость это способность материала сопротивляться вдавливанию в него более твердого тела (индентора) под действием внешних сил.

При испытании на твердость в поверхность материалов вдавливают пирамиду, конус или шарик (индентор), в связи с чем различают методы испытаний, соответственно, по Виккерсу, Роквеллу и Бринеллю. Кроме того, существуют менее распространенные методы испытания твердости: метод упругого отскока (по Шору), метод сравнительной твердости (Польди) и некоторые другие.

При испытании материалов на твердость не изготавливают стандартных специальных образцов, однако к размерам, поверхности образцов и изделий предъявляются определенные требования.

Твердость по Виккерсу (ГОСТ 2999-75) определяют путем вдавливания в металл индентора алмазной пирамиды с углом при вершине 136° под действием постоянной нагрузки (Р): 1; 2; 2,5; 3; 5; 10; 20; 30; 50 или 100 кгс и выдержки под нагрузкой 10–15 с. Для определения твердости черных металлов и сплавов используют нагрузки от 5 до 100 кгс, медных сплавов – от 2,5 до 50 кгс, алюминиевых сплавов – от 1 до 100 кгс. После снятия нагрузки определяют длину диагонали отпечатка с помощью микроскопа прибора, а твердость HV рассчитывают по формуле

где Р – нагрузка, кгс; d – диагональ отпечатка, мм.

В стандарте на испытание имеется таблица зависимости твердости от величины нагрузки и длины диагонали. Поэтому на практике расчетов не производят, а пользуются готовой расчетной таблицей. Твердость по Виккерсу HV измеряется в кгс/мм2, Н/мм2 или в МПа. Значение твердости по Виккерсу может изменяться от HV 2060 до HV 5 при нагрузке 1 кгс.

По методу Бринелля вдавливают в образец или изделие стальной закаленный шарик диаметром 10, 5 или 2,5 мм под действием нагрузок 3 000, 1 000, 750, 500, 250, 62,5 кгс и других (ГОСТ 9012-59). Схема определения твердости по Бринеллю показана на рис. 1.20. Полученный круглый отпечаток на образце измеряют лупой и по таблицам находят величину твердости по Бринеллю, значение которой не превышает 450 НВ. Твердость по Бринеллю почти совпадает со значениями твердости по Виккерсу.

Твердость НВ – это также величина напряжений сопротивления вдавливанию, т.е. физическая величина:

где Р – нагрузка, кгс; D – диаметр шарика, мм; t – глубина сегмента отпечатка; d – диаметр отпечатка, мм.

Рис. 1.20. Схема определения твердости по Бринеллю.

Твердость по Бринеллю НВ (по умолчанию) имеет размерность кгс/мм 2 , например, твердость алюминиевого сплава равна 70 НВ. При нагрузке, определяемой в ньютонах, твердость по Бринеллю измеряется в МПа.

Например, твердость отожженной стали равна 207 НВ при нагрузке 3 000 кгс, диаметре шарика 10 мм, диаметре отпечатка 4,2 мм или, учитывая коэффициент перевода: 1 ньютон = 9,8 кгс, НВ = 2028 МПа.

По методу Роквелла (ГОСТ 9013-59) вдавливают алмазный конус с углом при вершине 120о (шкалы А и С) или стальной шарик диаметром 1,5875 мм (шкала В). При этом определяют твердость, соответственно, HRA, HRC и HRB. В настоящее время измерение твердости по методу Роквелла является наиболее распространенным методом, потому что при использовании твердомеров Роквелла не требуется измерять отпечаток, число твердости считывается со шкалы прибора сразу после снятия основной нагрузки.

Метод заключается во вдавливании в испытуемый образец индентора под действием двух последовательно прикладываемых нагрузок – предварительной Р 0 и основной P 1 , которая добавляется к предварительной, так что общая нагрузка Р = Р0 + Р1. После выдержки в течение нескольких секунд основную нагрузку снимают и измеряют остаточную глубину проникновения индентора, который при этом продолжает находиться под действием предварительной нагрузки. Перемещение основной стрелки индикатора на одно деление шкалы соответствует перемещению индентора на 0,002 мм, которое принимается за единицу твердости.

На рис. 1.21 представлена схема измерения твердости по методу Роквелла алмазным или твердосплавным конусом. При испытаниях измеряют глубину восстановленного отпечатка. Шкалы А и С между собой совпадают, поскольку испытания проводят одним и тем же индентором – алмазным конусом, но при разных нагрузках: 60 и 150 кгс соответственно. Твердость в этом случае определяется как

Рис. 1.21. Схема определения твердости по Роквеллу (индентор – конус).

На практике значения твердости по Роквеллу не рассчитываются по формулам, а считываются с соответствующей (черной или красной) шкалы прибора. Шкалы HRC и HRA используются для высокой твердости, HRB – для низкой. Число твердости по Роквеллу измеряют в условных единицах, оно является мерой глубины вдавливания индентора под определенной нагрузкой.

Механические свойства металлов при растяжении . Испытание на растяжение материалов проводят в соответствии с ГОСТ 1497-84 «Методы испытаний на растяжение». Стандарт устанавливает методы статических испытаний на растяжение черных и цветных металлов для определения при температуре 20 °С пределов пропорциональности, упругости, текучести, временного сопротивления разрыву, относительного удлинения и относительного сужения, модуля упругости.

Для испытаний применяют плоские и цилиндрические образцы, вырезанные из детали или специально изготовленные. Размеры образцов регламентированы указанным стандартом, они подчиняются геометрическому подобию и могут быть короткими и длинными. Для цилиндрического образца берется соотношение начальной рабочей длины l 0 и исходного диаметра d0: l 0 = 5d 0 – короткий образец, l 0 = 10d 0 – длинный образец. Для плоского образца берется соотношение рабочей длины l 0 и площади поперечного сечения F 0: l 0 = 5,65 F 0 – короткий образец, l 0 = 11,3 F 0 – длинный образец. Цилиндрические образцы изготавливаются диаметром 3 мм и более. Образцы состоят из рабочей части длиной l 0 , и головок, форма и размер которых соответствует захватам машины (рис. 1.22).

Рис. 1.22. Цилиндрические и плоские образцы до и после испытания на растяжение.

Рис. 1.23. Первичная диаграмма растяжения.

Растяжение образца проводят на специальных машинах, фиксирующих величину прилагаемой нагрузки и изменение длины образца при растяжении.

Эти же машины позволяют записывать изменение длины образца при увеличении нагрузки (рис. 1.23), т.е. первичную диаграмму испытания на растяжение в координатах: нагрузка (Р), в Н, кН и абсолютное удлинение образца Δl в мм.

Измеряя величину нагрузки в характерных точках диаграммы испытаний на растяжение (рис. 1.23), определяют следующие характеристики механических свойств материалов:

σ пц – предел пропорциональности, точка р ;

σ 0,05 – предел упругости, точка е ;

σ т – предел текучести физический, точка s;

σ 0,2 – предел текучести условный;

σ в – временное сопротивление разрыву или предел прочности, точка b.

Значения 0,05 и 0,2 в записи предела упругости и текучести соответствуют величине остаточной деформации Δl в процентах от l 0 при растяжении образца. Напряжения при испытании на растяжение определяют путем деления нагрузки Р, соответствующей характерной точке на диаграмме, на площадь первоначального поперечного сечения F 0 рабочей части испытуемого образца:

Площадь поперечного сечение F 0 определяется следующим образом:

для цилиндрического образца

для плоского образца F 0 = a 0 × b 0 , где a 0 – первоначальная толщина, а b 0 – первоначальная ширина образца. В точке k определяют напряжение сопротивления разрушению материала.

Предел пропорциональности и предел упругости определяют с помощью тензометра (прибор для определения величины деформации). Предел текучести физический и условный рассчитывают, определяя нагрузку по диаграмме растяжения. Если на диаграмме нет площадки текучести, то для вычисления условного предела текучести необходимо провести графические построения на диаграмме (рис. 1.24). Вначале находят величину остаточной деформации, равную 0,2 % от l 0 , далее отмечают отрезок на оси деформации, равный 0,2 % от l 0, и проводят линию, параллельную пропорциональному участку диаграммы растяжения до пересечения с кривой растяжения. Нагрузка Р 0,2 соответствует точке их пересечения. Физический или условный предел текучести характеризует способность материала к началу пластической деформации, т.е. сопротивление малой пластической деформации.

Рис. 1.24. Определение предела текучести.

Предел прочности можно подсчитать, используя показание силоизмерителя, по максимальной нагрузке P max при разрыве; либо найти P max (P в) по первичной диаграмме растяжения. Характер деформации при растяжении вязких и хрупких материалов существенно различается.

Хрупкие материалы после достижения максимальной нагрузки быстро разрушаются без значительной пластической деформации, поэтому σ в для хрупких материалов является характеристикой сопротивления разрушению, а для пластичных – характеристикой сопротивления деформации.

Напряжение разрушения определяют как истинное. При этом нагрузку разрушения делят на конечную площадь поперечного сечения образца после разрушения (F к):

Все рассчитанные таким образом величины являются характеристиками прочности материала.

Пластичность, т.е. способность деформироваться без разрушения, характеризуется изменениями размеров образца. При испытании на разрыв определяют характеристики пластичности: относительное удлинение

и относительное сужение

где l к и F к – соответственно, длина рабочей части и площадь поперечного сечения образца после разрыва.

Рассчитанные характеристики механических свойств после испытания а растяжение заносят в протокол.

Механические свойства металлов при сжатии . Для хрупких материалов с низким сопротивлением разрыву проводят испытание на сжатие по ГОСТ 25.503-97. Для испытания используют цилиндрические образцы с гладкими торцами и торцовыми выточками.

При сжатии находят следующие характеристики сопротивления деформации: предел пропорциональности
, предел упругости
, физический предел текучести
, условный предел текучести
, предел прочности
. Напряжения рассчитываются как отношение соответствующей нагрузки к площади сечения образца до деформации. Предел прочности можно рассчитать без записи диаграммы сжатия, для остальных расчетов необходима первичная диаграмма испытания.

Диаграмма сжатия пластичных образцов отличается от диаграммы хрупких образцов. Высокопластичные материалы не удается разрушить при сжатии, и они сплющиваются. Поэтому временное сопротивление сжатию пластичных образцов можно определить лишь условно, т.к. после участка упрочнения происходит быстрое нарастание сплющивания образца. Хрупкие материалы разрушаются при незначительных деформациях и предел прочности находят по отношению максимальной нагрузки к первоначальной площади сечения образца. У хрупких материалов, например чугуна, сопротивление сжатию выше, чем сопротивление растяжению. Многие хрупкие материалы при сжатии разрушаются вследствие среза или скалывания по плоскостям под углом 45° к оси образца.

К характеристике пластичности при сжатии относят ε – относительное укорочение образца:
где h 0 , h k – начальная и конечная высота образца.

Испытания на изгиб . Испытание на изгиб проводят по ГОСТ 14019-80 по двум схемам: сосредоточенной нагрузкой, приложенной в середине пролета, и при чистом изгибе (рис. 1.25).

Рис. 1.25. Схема изгиба сосредоточенной силой (а ) и двумя симметричными нагрузками (б ).

В результате испытания находят предел пропорциональности, предел упругости, предел текучести с точным замером величины деформации. Предел прочности при изгибе рассчитывают σ изг:
где М изг – наибольший изгибающий момент, равный при первой схеме нагружения М изг = Рl /4, а по второй схеме – М изг =Ра; W – момент сопротивления, характеристика поперечного сечения бруса, для образцов круглого сечения W = πd 3 /32; для образцов прямоугольного сечения W = bh 2 /6, где h – высота бруса.

Пластичность характеризует f разр (величина прогиба), деформация, которая зависит от материала, длины образца, момента инерции и т.д.

Динамические испытания . Испытания на ударный изгиб . Важной характеристикой механических свойств является ударная вязкость, характеризующая удельную работу, затрачиваемую на разрушение при ударе образца с надрезом. Ударная вязкость определяется при испытании на маятниковом копре с постоянным запасом работы маятника по ГОСТ 9454-78 «Метод испытания на ударный изгиб при пониженной, комнатной и повышенной температурах». Стандарт распространяется на черные и цветные металлы и сплавы и устанавливает метод испытания от –100 до +1 000 °С. Метод основан на разрушении ударом маятникового копра образца с концентратором напряжений. В результате испытания определяют полную работу, затраченную при ударе К или ударную вязкость КС.

Используют образцы прямоугольной формы с концентратором типа U, V, T (усталостная трещина). Наиболее распространенными образцами являются образцы размерами 55×10×10 мм с U концентратом 2×2 мм (рис. 1.26).

Рис. 1.26. Стандартный образец с U-образным надрезом для испытаний на ударный изгиб.

На разрушение ударом образца затрачивается только часть энергии маятника, в связи с чем маятник после разрушения образца продолжает двигаться, отклоняясь на определенный угол. Чем больше величина работы, затрачиваемой на разрушение образца, тем на меньший угол он отклоняется от вертикали после разрушения. Величиной этого угла и определяют работу удара К или работу, затраченную на разрушение образца. Работу разрушения K относят к площади поперечного сечения образца S0 в месте излома, и тем самым определяют KC ударную вязкость: КС = К/S 0 , где К измеряется в Дж (кгс·м), S 0 в м 2 (см 2).

В зависимости от вида концентратора ударная вязкость обозначается KCU, KCV, KCT и имеет размерность МДж/м 2 (МДж/см 2) или кгс·м/см 2 .

Контрольные вопросы и задания

1. Какие типы кристаллических решеток характерны для чистых металлов?

2. Изобразите решетки кристаллов ОЦК, ГЦК, ГПУ, укажите их координационное число и плотность упаковки.

3. Какие типы связей характерны для металлов Al, Cu, Fe; полуметаллов Bi, Si и неметаллических материалов?

4. Опишите типичные признаки металлического состояния.

5. Какие дефекты кристаллического строения присутствуют в реальных кристаллах?

6. Опишите строение пластмасс и других неметаллических материалов.

7. Охарактеризуйте основные методы исследования материалов.

8. В чем заключается макроанализ материалов?

9. Что можно определить при исследовании микроструктуры?

10. Как приготовить объекты исследования для макро- и микроанализа?

11. Опишите преимущества электронной микроскопии при исследовании материалов.

11. Какие задачи можно решать, применяя рентгеновские методы анализа для изучения материалов?

12. Какие требования предъявляют к выбору материала при изготовлении изделий?

13. Опишите химические свойства материалов.

14. Какие виды коррозии возможны в материалах при их эксплуатации в агрессивных средах?

15. Опишите физические и теплофизические свойства материалов.

16. Охарактеризуйте механические свойства материалов.

17. Как определяют твердость по Бринеллю, Роквеллу и Виккерсу?

18. Запишите единицы измерения твердости по Бринеллю, Роквеллу и Виккерсу.

19. Какие методы испытаний механических свойств относят к статическим, динамическим и циклическим?

20. Изобразите первичную диаграмму растяжения для пластичного материала.

21. Как по диаграмме растяжения определить предел прочности и предел текучести?

22. Какие типы образцов используют для нахождения относительного удлинения и относительного сужения?

23. Какие характеристики определяют при испытании на сжатие и на изгиб?

24. Какие характеристики вычисляют при испытании на ударный изгиб?

25. Чем различается ударная вязкость, обозначаемая КСU , КСV, КСТ?

Механические свойства характеризуют способность материа-лов сопротивляться действию внешних сил. К основным механичес-ким свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

Прочность — это способность материала сопротивляться раз-рушающему воздействию внешних сил.

Твердость — это способность материала сопротивляться вне-дрению в него другого, более твердого тела под действием нагрузки.

Вязкостью называется свойство материала сопротивляться раз-рушению под действием динамических нагрузок.

Упругость — это свойство материалов восстанавливать свои раз-меры и форму после прекращения действия нагрузки.

Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.

Хрупкость — это свойство материалов разрушаться под дей-ствием внешних сил без остаточных деформаций.

При статических испытаниях на растяжение определяют вели-чины, характеризующие прочность, пластичность и упругость мате-риала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l 0 и диа-метром d 0 . Образец растягивается под действием приложенной силы Р (рис. 1, а ) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F 0 , МПа:

σ = P /F 0 ,

Деформация характеризует изменение размеров образца под дей-ствием нагрузки, %:

ε = [(l 1 -l 0)/l 0 ] · 100,

где l 1 — длина растянутого образца.

Деформация может быть упру-гой (исчезающей после снятия нагрузки) и пластической (остаю-щейся после снятия нагрузки).

При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали. После проведения ис-пытаний определяются следующие характеристики механических свойств.

Предел упругости σ у — это максимальное напряжение при кото-ром в образце не возникают пластические деформации.

Предел текучести σ т — это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1). Если на диаграмме нет площадки текучести (что наблюдается для хрупких материалов), то определяют условный предел текучести σ 0,2 — напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σ в — это на-пряжение, отвечающее максимальной нагрузке, которую выдержи-вает образец при испытании.


Относительное удлинение после разрыва δ — отношение при-ращения длины образца при растяжении к начальной длине l 0 , %:

δ = [(l k -l 0)/l 0 ] · 100,

где l к — длина образца после разрыва.

Рис. 1. Статические испытания на растяжение: а - схема испытания;

б - диаграмма растяжения

Относительным сужением после разрыва ψ называется умень-шение площади поперечного сечения образца, отнесенное к началь-ному сечению образца, %:

ψ = [(F 0 -F k)/F 0 ] · 100,

где F к — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.

Твердость металлов измеряется путем вдавливания в испытуе-мый образен твердого наконечника различной формы/

Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердо-сти по Бринеллю НВ определяется отношением нагрузки, действую-щей на шарик, к площади поверхности полученного отпечатка.

Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В ) или алмазного конуса с углом при вершине 120° (шкалы А и С ). Вдавли-вание производится под действием двух нагрузок — предваритель-ной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А , В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.

В методе Виккерса применяют вдавливание алмазной четырех-гранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.

Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сече-ния F ; Дж/м2:

KC = A/F

Испытания проводятся ударом специального маятникового коп-ра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.

Металлы и их сплавы являются одним из самых распространенных материалов для изготовления изделий различных видов. Но так как каждый из типов имеет определенные свойства – перед применением их следует детально изучить.

Зачем нужно знать механические свойства металлов

Металлы относятся к химическим элементам и веществам, которые характеризуются высоким показателем теплопроводности, в большинстве своем имеют жесткость. Под воздействием высоких температур повышается пластичность, обладают ковкостью. Эти характеристики материалов позволяют осуществлять их обработку различными способами.

Металлические материалы и их сплавы характеризуются рядом показателей: химическими, механическими, физическими и эксплуатационными. В совокупности они дают возможность определить фактические характеристики в полном объеме. Выделить наиболее важные из них невозможно. Но для решения определенных задач большее внимание уделяется конкретной группе свойств.

Механические свойства металлов необходимо знать для решения следующих вопросов:

  • производство изделия с определенными качествами;
  • выбор оптимального процесса обработки заготовки;
  • влияние механических характеристик металлических материалов на эксплуатационные свойства продукта.

Для определения конкретных механических свойств применяются различные методы. Испытания металлов и сплавов проводятся с помощью специальных приборов. Это делается в лабораторных условиях. Для достижения точных результатов рекомендуется использовать результаты исследований государственных метрологических организаций.

Механические свойства определяют показатель сопротивляемости того или иного материала на внешние силовые воздействия. Для каждого параметра существует определенные числовые показатели.

Твердость

При воздействии внешних факторов на металлические изделия происходит их деформация – пластическая или упругая. Твердость описывает сопротивление этим факторам, характеризует степень сохранения изначальной формы и свойств материала, изделия.

В зависимости от желаемых результатов проверка материала на твердость осуществляется тремя методами:

  • статический. На специальный индикатор, расположенный на поверхности металла, прикладывают механическую силу. Это делается постепенно и одновременно с этим фиксируется степень деформации;
  • динамический. Воздействие происходит для фиксации упругой отдачи или формирования отпечатка с определенной конфигурацией;
  • кинетический. Схож со статическим. Разница заключается в непрерывном воздействии для построения диаграммы изменения характеристик образца.

Измерение твердости зависит от выбранного метода — Бринелля (НВ), Роквелла (шкалы А, В и С) или Виккерса (НV). Все зависит от степени воздействия на материал, с помощью которых можно определить поверхностную, проекционную или объемную твердость.

Шкала Мосса применяется для вычисления показателя твердости редко. Ее суть состоит в вычислении характеристиках объекта методом царапания его поверхности.

Вязкость и хрупкость

Эти характеристики указывают на возможность металла оказывать сопротивление при воздействии ударных нагрузок. Показателем является скорость деформации, т.е. изменение изначальной конфигурации заготовки при внешнем воздействии.

Знание показателя вязкости и хрупкости необходимо для расчета поглощаемой энергии воздействия, которая приводит к деформации металлического образца. В зависимости от необходимых данных различают следующие методы измерения и виды вязкости металлов:

  • статическая. Происходит медленное воздействие на материал до момента его разрушения;
  • циклическая. Образец подвергают многократным нагрузкам с одинаковым или изменяющимся показателем силы. При этом основной величиной циклической вязкости является количество работы, необходимой для разрушения образца;
  • ударная. Для ее расчета применяют маятниковый копер. Заготовку крепят на нижнем основании, маятник с рубящим конусом находится в верхней точке. После его опускания происходит взаимодействие металла и рубящей части. Степень деформации характеризуется вязкостью образца.

В зависимости от системы измерения существуют различные показатели вязкости:

  • СИ — м²/с;
  • СГС – стокс (СТ) или сантистокс (сСт)

Помимо метода испытания необходимо учитывать другие механические свойства металлов – температура на его поверхности и в структуре, влажность в помещении и т.д.

Хрупкость является обратным показателем вязкости. Она определяет, насколько быстро металл или сплав будет разрушаться под воздействием внешней силы.

Напряжение

Напряжением называется возникновение внутренних сил с различными векторами направленности при внешнем воздействии. Эта величина может быть внутренняя или поверхностная. Является обязательным для расчета при изготовлении несущих стальных конструкций или элементов оборудования, подвергающихся постоянным нагрузкам.

Главным условием для измерения этого показателя является равномерная нагрузка, действующая в определенном направлении. При этом возникает напряженное состояние образца, который подвергается воздействию уравновешенных сил. Помимо этого, воздействие может быть односекторным или много векторным.

Существуют следующие виды напряжения материалов и их сплавов:

  • остаточное. Формируется уже после окончания воздействия внешних факторов. К ним относятся не только механические силы, но и быстрый нагрев или охлаждение образца;
  • временные. Возникают только при внешних нагрузках. После их прекращения изделие приобретает изначальные характеристики;
  • внутреннее. Чаще всего происходит в результате неравномерного нагрева заготовок.

Напряжение является отношением силы воздействия на площадь, на которую она прилагается.

Кроме прямого давления на поверхность может наблюдаться касательное. Расчет этого параметра требует более сложных методик.

Выносливость и усталость

При длительном приложении внешних сил в структуре образца выявляются деформации и дефекты. Они приводят к потере прочности образца и как следствие – к его разрушению. Это называется усталостью металла. Выносливость является обратной характеристикой.

Такое явление наступает в результате появления последовательных напряжений (внутренних или поверхностных) за определенный промежуток времени. Если структура не подвергается изменению – говорят о хорошем показателе выносливости. В противном случае происходит деформация.

В зависимости от точности расчета выполняют следующие испытания образца на выносливость для того, чтобы узнать механические свойства металлов:

  • чистый изгиб. Деталь закрепляется на концах и происходит ее вращение, в результате чего она деформируется;
  • поперечный изгиб. Дополнительно выполняется вращение образца;
  • изгиб в одной плоскости;
  • поперечный и продольный изгиб в одной плоскости;
  • неравномерное кручение с повторением цикла.

Эти испытания позволяют определить показатель выносливости и рассчитать время наступления усталости детали.

Для проведения испытаний необходимо руководствоваться принятыми методиками, которые изложены в ГОСТ-1497-84. Особое внимание уделяется отклонению свойств металла от нормы.

Ползучесть

Этот показатель определяет степень непрерывной пластической деформации при постоянном воздействии внешних и внутренних факторов. Вычисление этого параметра необходимы для определения жаропрочности металлов и их сплавов.

Для определения ползучести образец нагревают до определенной температуры. После этого наблюдают степень изменения его конфигурации с учетом приложенного напряжения. В зависимости от термического воздействия различают два вида испытаний на ползучесть:

  • низкотемпературное. Степень нагрева образца не превышает 0,4 от температуры его плавления;
  • высокотемпературная. Коэффициент нагрева больше 0,4 температуры нагрева.

Для проведения испытаний используют стандартные образцы прямоугольной или цилиндрической формы. При этом степень погрешности измерения не должна превышать 0,002 мм. В результате испытаний формируется кривая, характеризующая процесс ползучести.

В видеоматериале показан пример работы маятникового копера:

Металлами называют химические вещества и элементы, которые характеризуются такими свойствами, как хорошей проводимостью тепла и электрического тока, непрозрачностью, но способны отражать свет, ковкостью, и пластичностью. Металлы используют практически во всех отраслях, сферах нашей жизни. Из них делают различные механизмы, машины, оборудование, приборы и еще очень много разных вещей. Все металлы разделяют по числу, характером и содержанием легирующих частиц (компонентов) и по величине чистоты. Компонентами называются химические частицы, которые могут входить в состав сплава или металла. Обычно каждый металл имеет свои уникальные возможности. Но для его использования выделяют отдельный ряд свойств. Эти свойства называются механическими. В данной статье будут рассмотрены механические свойства металлов.

Понятие механических свойств металлов

Что означают эти механические свойства? Они описывают и объясняют способность того или иного металла осуществлять сопротивление на силовые факторы из внешней среды. И соответственно есть числовые показатели, указывающие степень сопротивления того или иного металла. К основным механическим свойствам металлов и сплавов на сегодняшний день относят твердость, вязкость, прочность, ползучесть, пластичность, износоустойчивость, и ударную вязкость. Величины этих свойств определяют во время опытов, предусматривающие силовую нагрузку на металл или сплав. И такие нагрузки подразделяют на динамические, статические и повторно-переменные. Испытания металла проводят такими способами как растяжение, скручивание, сгибание, сжатия и ударное сгибания.

Понятие прочности металла

Под прочностью металла понимают способностью сплава или металла осуществлять сопротивление, как внешним силовым факторам, так и внутренним факторам, и таким образом не поддаваться деформации. Если внешние факторы вполне понятны, т.е. это удар, пресс, нажим, то к внутренним относятся нагрев, или охлаждения, изменение структуры исследуемого вещества.

Определение твердости металла

Твердостью металла является его способность противостоять или осуществлять сопротивление телу, которое намного тверже.

Твердость проверяют методами вдавливания в исследуемый материал шариков определенных размеров или алмазной пирамиды. Твердость определяют по трем показателям, а именно по Бринеллю, по Роквеллу и по Виккерсу.

Твердость по Бринеллю определяется в результате вдавливания стального шарика, который имеет диаметр два с половиной миллиметра, или пять или десять миллиметров.

Для определения твердости по Роквеллу вдавливается или стальной шарик, который имеет диаметр 1,58 мм, или алмазный конус, который имеет угол на своей вершине 120 °. Различают несколько значений твердости, а именно очень твердую, мягкую сталь и закаленную сталь. Для первого вида твердости используют вдавливания алмазного конуса, для второго применяют стальной шарик, а для последнего вида принимают алмазный или твердосплавный конус. Система Роквелла в результате неглубокого погружения алмазного конуса в исследуемый материал позволяет исследовать металл более точно, чем система Бринелля.

Что касается определения твердости по системе Виккерса, то при его методике используется алмазная пирамида, которая имеет правильную четырехгранную форму. После того, как подвергли воздействию металл со стороны пирамиды, то есть ее погрузили в металл на определенную величину, осуществляют расчеты, отталкиваясь от величины диагоналей вмятины в металле. Там даже разработаны специальные таблицы. Этот метод применяют для измерения твердости металлических деталей, имеющих небольшое поперечное сечение, а также для поверхностных слоев, имеющих большую твердость и малую тонкость.

Упругость, ударная вязкость, ползучесть и усталость

Механические свойства металлов и сплавов также включают в себя и упругость. Под ней понимают способность металла восстанавливать свою первоначальную форму после того, как прекратились внешние силы.

Такое свойство как пластичность означает возможность сплава или металла изменять свои формы во время нагрузки и сохранять уже новые формы после прекращения нагрузки.

Под ударной вязкостью понимают свойство металла, что дает сопротивление действию ударной нагрузки. То есть по металл бьют каким-то специально заготовленным материалом, а металл, в свою очередь, или выдерживает, или разрушается. Единицей измерения является Джоуль на квадратный метр.

Под свойством ползучесть понимается способность металлов или сплавов непрерывно и медленно изменять свою форму, другими словами деформироваться под воздействием нагрузки в течение длительного времени.

Восновные механические свойства металлов включают еще такое понятие как усталость, или умеренное разрушение структуры металла в течение времени при непрерывном числе переменных нагрузок.

И еще

Каждая механическая характеристика имеет свой предел, или свою границу, после которой наступает разрушение структуры металла. Если вам нужно произвести определение механических свойств металлов, а точнее параметры растяжения, то следует выделить временное сопротивление, истинное сопротивление разрыва, и предел текучести. Под временным сопротивлением понимают условное состояние сопротивления, которое соответствует сильной нагрузке, после превышения силы которой, произойдет разрушение кристаллической сетки металла. Истинное сопротивление разрыва определяется следующим образом: доля нагрузки во время разрыва делится на площадь поперечного сечения металла, где произошел разрыв. Пределом текучести называется такая нагрузка, которая является минимальной и при которой металл начинает деформироваться. Этот предел текучести называют еще физическим. Есть еще один предел текучести, который называют условным. Под ним понимают нагрузки, при которых происходит растяжение образца металла на 0,2 процента от его длины. Кроме этих есть еще другие показатели, которые характеризуют механические свойства металлов и сплавов.

При характеристике прочности также используют границу пропорциональности. Это такой размер нагрузки, который дает отклонение линейной корреляции между величиной нагрузки и величиной удлинения и может достигать 10-15%.

А пределом упругости является величина нагрузки, при которой происходит деформация.

Механические свойства характеризуют способность металлов и сплавов сопротивляться действию приложенных к ним нагрузок, а механические характеристики выражают эти свойства количественно. Основными свойствами металлических материалов являются; прочность, пластичность (или вязкость), твердость, ударная вязкость, износоустойчивость, ползучесть и др.
Механические характеристики материалов определяются при механических испытаниях, которые в зависимости от характера действия нагрузки во времени делятся на статические, динамические и повторно-переменные.
В зависимости от способа приложения внешних сил (нагрузок) различают испытания на растяжение, сжатие, изгиб, кручение, ударный изгиб и т. п.
Основные механические характеристики металлов и сплавов.
Временное сопротивление (предел прочности, предел прочности при растяжении- условное напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца.
Истинное сопротивление разрыву (действительное напряжение) - напряжение, определяемое отношением нагрузки в момент разрыва к площади поперечного сечения образца в месте разрыва.
Предел текучести (физический) - наименьшее напряжение, при котором образец деформируется без заметного увеличения растягивающей нагрузки.
Предел текучести (условный) - напряжение, при котором остаточное удлинение достигает 0,2% длины участка образца, удлинение которого принимается в расчет при определении указанной характеристики. Предел пропорциональности (условный)- напряжение, при котором отклонение от линейной зависимости между нагрузкой и удлинением достигает такой величины, что тангенс угла наклона, образованного касательной к кривой деформации (в рассматриваемой точке), с осью нагрузок увеличивается на 50% своего значения на линейном упругом участке. Допускается увеличение тангенса угла наклона на 10 или 25%.
Предел упругости- условное напряжение, соответствующее появлению остаточной деформации. Допускается определение предела упругости с допусками до 0,005%, тогда соответственно будет обозначаться.
Относительное удлинение после разрыва- отношение приращения длины образца после разрыва к его первоначальной расчетной длине. Различают относительные удлинения, полученные при испытании на образцах с пятикратным и десятикратным отношением длины к диаметру. Допускаются и другие отношения, например 2,5, при испытании отливок.
Относительное сужение после разрыва - отношение площади поперечного сечения образца в месте разрыва к начальной площади его поперечного сечения.
Указанные характеристики механических свойств определяются при испытании материалов на растяжение по методам, изложенным в ГОСТ 1497-61, на цилиндрических и плоских образцах, формы и размеры которых установлены тем же стандартом. Испытания на растяжение при повышенных температурах (до 1200°С) установлены ГОСТ 9651-73, на дли-тельную прочность- ГОСТ 10145-62.
Модуль нормальной упругости- отношение напряжения к соответствующему ему относительному удлинению при растяжении (сжатии) в пределах упругих деформаций (закон Гука).
Ударная вязкость- механическая характеристика вязкости металла - определяется работой, расходуемой для ударного излома на маятниковом копре образца данного типа и отнесенной к рабочей площади поперечного сечения образца в месте надреза. Испытания при нормальной температуре проводятся по ГОСТ 9454-60, при пониженных - по ГОСТ 9455-60 и при повышенных - по ГОСТ 9656-61.
Предел выносливости (усталости) -максимальное напряжение, при котором материалы образца выдерживают без разрушения заданное количество симметричных циклов (от +Р до - Р), принимаемое за базу. Количество циклов задается техническими условиями и представляет большое число. Методы испытания металлов на выносливость регламентируются по ГОСТ 2860-65.
Предел прочности при сжатии - отношение разрушающей нагрузки к площади поперечного сечения образца до испытания.
Условный предел ползучести- напряжение, вызывающее заданное удлинение образца (суммарное или остаточное) за установленный промежуток времени при заданной температуре.
Твердость по Бринелю - определяется на твердомере ТШ путем вдавливания стального закаленного шарика р. испытуемый металл или сплав.
Твердость по Роквеллу HRA, HRB и HRC определяется вдавливанием в металл стального шарика диаметром ~ 1,6мм или конуса.(алмазно или твердосплавного) с утлом при вершине 120° на твердомере ТК. В зависимости от условий определения, которые стандартизованы ГОСТ 9013-68, различают три значения HR: HRA - для очень твердых материалов (шкала А) - испытание производится вдавливанием алмазного конуса; HRB - для мягкой стали (шкала В) - стального шарика; HRC - для закаленной стали (шкала С) - твердосплавного или алмазного конуса.
Глубина проникновения алмазного конуса при испытаниях в металле небольшая, что позволяет испытывать более тонкие изделия, чем при определении твердости по Бринелю, Твердость но Роквеллу является условной характеристикой, значение которой отсчитывается по шкале прибора.
Твердость по Виккерсу HV определяется вдавливанием алмазной стандартной правильной четырехгранной пирамиды. Определение числа твердости производится путем измерения длины диагоналей (среднее арифметическое суммы двух диагоналей) и пересчета по формуле
Стандартными нагрузками в зависимости от толщины образца приняты 5, 10, 20, 30, 50 и 100 кгс. Выдержка времени под нагрузкой берется для черных металлов 10-15 секунд, для цветных - 28-32. Соответственно символ HV 10/30-500 означает: 500 - число твердости; 10 - нагрузку и 30 - время выдержки.
Метод Виккерса применяется для измерений твердости деталей малых сечений и твердых тонких поверхностных слоев цементированных, азотированных или цианированных изделий.

49.Вторичная кристаллизация металлов Вторичная кристаллизация имеет большое практическое значение и служит основой для ряда процессов термической обработки, старения и т. д., значительно изменяющих и улучшающих свойства сплавов. Большинство процессов вторичной кристаллизации связано с диффузией. Диффузия в твердых сплавах возможна по ряду причин. В частности, в растворах замещения она протекает бла-годаря наличию незаполненных узлов (вакансий) в решетках. Перемещаться могут как атомы растворителя, так и атомы растворенного вещества. При образовании растворов внедрения перемещение растворенных атомов происходит через междоузлия решеток.Диффузия протекает тем быстрее, чем больше разность концентр;.в п выше температура.I (од к о а г у л я ц и е й понимают рост крупных кристаллов за счет мелких; под с ф е р о и д и з а ц и е й - превращение вытянутых кристаллов в округленные. Оба процесса протекают вследствие стремления системы к уменьшению свободной энергии. В данном случае ЭТО достигается потому, что отношения суммы

поверхностей зерен к их объемам становятся меньше. Коагуляция и сфероидизация протекают тем легче, чем выше температура. На рис. 41 представлена диаграмма состояния сплава, в котором растворимость второго компонента в твердом растворе уменьшается. На этой диаграмме (в отличие от диаграммы рис. 39) появляется линия EQ, характеризующая выделение избыточных кристаллов компонента В, которые называются вторичными (В2), в отличие от первичных кристаллов (В\), которые выделяются по линии CD. Для примера рассмотрим ход образования вторичных кристаллов при охлаждении твердых растворов а с концентрацией К. При температуре t\ структура однофазна, при достижении линии EQ раствор становится насыщенным и по мере дальнейшего охлаждения из него выделяется избыточная фаза В2, последняя может выделяться по границам кристаллов а и принимать вид сетки. Здесь также сначала происходит образование зародышей и затем их рост Однако место появления зародышей и их рост заранее определено поверхностями первичных зерен. Иногда расположение вторичной фазы в виде сетки нежелательно, тогда или предупреждают ее образован не, или устраняют. Устраняют сетку по-разному, например, сфероидизирую-щим отжигом. Кристаллизация по диаграмме (рис. 41) дает возможность значительно изменять свойства сплава путем закалки и отпуска или путем старения.

50.ДС сплавов с неограниченной растворимостью компонентов Оба компонента неограниченно растворимы в жидком и твердом состояниях ине образуют химических соединений.

Компоненты: А, В.

Фазы: L, α.

Если два компонента неограниченно растворяются в жидком и твердом состояниях, то возможно существование только двух фаз - жидкого раствора Lи твердого раствора α. Следовательно, трех фаз быть не может, кристаллизация при постоянной температуре не наблюдается и горизонтальной линии на диаграмме нет.

Диаграмма, изображенная на рис. 1, состоит из трех областей: жидкость, жидкость + твердый раствор и твердый раствор.

Линия АmВ является линией ликвидус, а линия АnВ - линией солидус. Процесскристаллизации изображается кривой охлаждениясплава (рис. 2).

Точка 1 соответствует началу кристаллизации , точка 2 - концу. Между точками 1 и 2 (т. е. между линиямиликвидус и солидус) сплав находится в двухфазном состоянии. При двух компонентах и двух фазах система моновариантна (с = k-f+1 = 2 - 2 + 1 = 1), т. е. если изменяется температура, то изменяется и концентрациякомпонентов в фазах; каждой температуре соответствуют строго определенные составы фаз. концентрация и количество фаз у сплава , лежащего между линиямисолидус и ликвидус, определяются правилом отрезков. Так, сплав К в точке а состоит из жидкой и твердой фаз. Состав жидкой фазы определится проекцией точки b, лежащей на линии ликвидус, а Состав твердой фазы - проекцией точки с, лежащей на линии солидус. Количество жидкой и твердой фаз определяется из следующих соотношений: количество жидкой фазы ac/bc, количество твердой фазы ba/bc.

Во всем интервалекристаллизации (от точки 1до точки 2) из жидкого сплава ,

имеющего исходную концентрацию К,выделяются кристаллы, более богатые тугоплавким компонентом. Состав первых кристаллов определится проекцией s. Закончиться кристаллизациясплава К должна в точке 2, когда последняя капля жидкости, имеющая Состав l, затвердеет. Отрезок, показывающий количество твердой фазы, равнялся нулю в точке /, когда только началась кристаллизация , и количеству всего сплава в точке 2, когда кристаллизация закончилась. Состав жидкости изменяется по кривой 1 - l, а Составкристаллов - по кривой s - 2, и в момент окончания кристаллизацииСоставкристаллов такой же, как и Состав исходной жидкости.

51.Температурные свойства материалов Для материалов вводят несколько характерных температурных точек, указывающих работоспособность и поведение материалов при изменении температуры. Нагревостойкость - максимальная температура, при которой не уменьшается срок службы материала. По этому параметру все материалы разделены на классы нагревостойкости.

Теплостойкость - температура, при которой происходит ухудшение характеристик при кратковременном ее достижении.
Термостойкость
- температура, при которой происходят химические изменения материала.
Морозостойкость
- способность работать при пониженных температурах (этот параметр важен для резин).
Горючесть
- способность к воспламенению, поддержанию огня, самовоспламенению Это различные степени горючести. Все эти понятия определяют характерные температуры, при которых меняется какое-либо свойство материала. Есть некоторые температуры, характерные для всех материалов, есть температуры, специфичные для некоторых электротехнических материалов. при которых резко меняются какие-либо характеристики. Большинству материалов присущи точки плавления, кипения. Точка плавления - температура, при которой происходит переход из твердого состояния в жидкое. Не обладает точкой плавления жидкий гелий, он даже при нуле Кельвина остается жидким. К наиболее тугоплавким можно отнести вольфрам - 3387 °С, молибден 2622 °С, рений - 3180 °С, тантал - 3000°С. Есть тугоплавкие вещества среди керамик: карбид гафния HfC и карбид тантала TaC имеют точки плавления 2880 °С., нитрид и карбид титана - более 3000 °С. Есть материалы, в основном это термопластичные полимеры, которые обладают точкой размягчения, но до плавления дело не доходит, т.к. начинается разрушение полимерных молекул при повышенных температурах. У термореактивных полимеров даже до размягчения дело не доходит, материал раньше начинает разлагаться. Есть сплавы и другие сложные вещества у которых сложный процесс плавления: при некоторой температуре, называемой «солидус» происходит частичное расплавление, т.е. переход части вещества в жидкое состояние. Остальное вещество находится в твердом состоянии. Получается что-то типа кашицы. По мере повышения температуры все большая часть переходит в жидкое состояние, наконец при некоторой температуре, называемой «ликвидус» произойдет полное расплавление вещества. Например сплав олова и свинца для пайки, называемый попросту «припой», начинает плавиться примерно при 180 °С (точка солидус), а расплавляется примерно при 230 °С (точка ликвидус).

В любых процессах плавления, достижение определенной точки является необходимым, но недостаточным условием плавления. Для того, чтобы расплавить вещество нужно сообщить ему энергию, которая называется теплотой плавления. Она рассчитывается на один грамм (или на одну молекулу). Точка кипения - температура, при которой происходит переход из жидкого состояния в парообразное. Кипят практически все простые вещества, не кипят сложные органические соединения, они разлагаются при более низких температурах, не доходя до кипения. На точку кипения оказывает значительное влияние давление. Так, например для воды можно сдвинуть точку кипения от 100 °С до 373°С приложением давления в 225 атм. Кипение растворов, т.е. взаимно растворимых друг в друге веществ происходит сложным образом, кипят сразу два компонента, только в паре одного вещества больше, чем другого. Например слабый раствор спирта в воде выкипает так, что в паре спирта больше чем в воде. За счет этого работает перегонка и после конденсации пара получается спирт, но обогащенный водой. Есть смеси выкипающие одновременно, например 96% спирт. Здесь при кипении состав жидкости и состав пара одинаковы. После конденсации пара получается спирт точно такого же состава. Такие смеси называются азеотропными . Есть температуры специфичные для электротехнических материалов. Например для сегнетоэлектриков вводят т.н. точку Кюри . Оказывается, что сегнетоэлектрическое состояние вещества возникает только при пониженных температурах. Существует такая температура для каждого сегнетоэлектрика, выше которой домены не могут существовать и он превращается в параэлектрик. Такая температура называется точкой Кюри. Диэлектрическая проницаемость ниже точки Кюри велика, она слабо нарастает по мере подхода к точке Кюри. После достижения этой точки диэлектрическая проницаемость резко падает. Например, для наиболее распространенного сегнетоэлектрика: титаната бария, точка Кюри 120 °С, для цирконат-титаната свинца 270 °С, для некоторых органических сегнетоэлектриков температура Кюри отрицательна. Аналогичная температура (и тоже называется точка Кюри) имеется для ферромагнетиков. Поведение магнитной проницаемости подобно поведению диэлектрической проницаемости по мере повышения температуры и подхода к точке Кюри. Единственное отличие - падение магнитной проницаемости с ростом температуры происходит более резко после достижения точки Кюри. Значения точки Кюри для некоторых материалов: железо 770 °С, кобальт 1330°С, эрбий и гольмий (-253°С), керамика - в широком диапазоне температур. Для антиферромагнетиков аналогичная точка называется точкой Нееля .


Похожая информация.